
Software Product Line Engineering

Pablo Sánchez

Dpto. Matemáticas, Estad́ıstica y Computación
Universidad de Cantabria, Santander (Spain)

p.sanchez@unican.es

LSI - Working Sessions
February 16th 2010, Santander (Spain)

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 1 / 30

Introduction A little bit about me

About me

Main research lines:

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Introduction A little bit about me

About me

Main research lines:
◮ Aspect-Oriented Software Development.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Introduction A little bit about me

About me

Main research lines:
◮ Aspect-Oriented Software Development.
◮ Model-Driven (Software) Development.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Introduction A little bit about me

About me

Main research lines:
◮ Aspect-Oriented Software Development.
◮ Model-Driven (Software) Development.
◮ PhD Thesis: Almadraba - Model-Driven Development of

Aspect-Oriented Executable UML Models. (Supervised by Lidia
Fuentes)

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Introduction A little bit about me

About me

Main research lines:
◮ Aspect-Oriented Software Development.
◮ Model-Driven (Software) Development.
◮ PhD Thesis: Almadraba - Model-Driven Development of

Aspect-Oriented Executable UML Models. (Supervised by Lidia
Fuentes)

◮ Software Product Lines.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Introduction A little bit about me

About me

Main research lines:
◮ Aspect-Oriented Software Development.
◮ Model-Driven (Software) Development.
◮ PhD Thesis: Almadraba - Model-Driven Development of

Aspect-Oriented Executable UML Models. (Supervised by Lidia
Fuentes)

◮ Software Product Lines.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Introduction A little bit about me

About me

Main research lines:
◮ Aspect-Oriented Software Development.
◮ Model-Driven (Software) Development.
◮ PhD Thesis: Almadraba - Model-Driven Development of

Aspect-Oriented Executable UML Models. (Supervised by Lidia
Fuentes)

◮ Software Product Lines.

Minor research lines: Component-based software development,
software architectures, pervasive computing, executable UML,
component coordination and adaptation, software traceability and
middleware platforms.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Introduction A little bit about me

About me

Main research lines:
◮ Aspect-Oriented Software Development.
◮ Model-Driven (Software) Development.
◮ PhD Thesis: Almadraba - Model-Driven Development of

Aspect-Oriented Executable UML Models. (Supervised by Lidia
Fuentes)

◮ Software Product Lines.

Minor research lines: Component-based software development,
software architectures, pervasive computing, executable UML,
component coordination and adaptation, software traceability and
middleware platforms.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 2 / 30

Background: Software Product Line Engineering SPL Goal

Software Product Line Engineering

Software Product Line Holly Grail

Create an infrastructure for dealing with the variability of similar software
systems [7, 11, 8].

Example: Applications for mobile devices

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 3 / 30

Background: Software Product Line Engineering SPL Goal

Software Product Line Engineering

Software Product Line Holly Grail

Create an infrastructure for dealing with the variability of similar software
systems [7, 11, 8].

Example: Applications for automated houses

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 3 / 30

Background: Software Product Line Engineering SPL engineering processes

A typical SPL engineering process

Domain Engineering Application Engineering

[1..*]

[1..*]

Requirements Engineering

Architectural Design

Implementation

VML4RE

[1..*]

[1..*]

refinement
used as input for

manual construction

<< component>>

<< component>>

<< component >>
VMLArch

1

refinement

manually constructed

by refinement

2

manually

completed

3

A B

C

<< component>>

<< component >>

B

C

4

automatically generated

by VML4Arch execution

5

cclass A {
cclass X {

// TODO

}

…...
}

cclass B {
cclass Y {

// TODO

}

…...
}

cclass A {
cclass X {

int counter;
}

…...
}

cclass B {
cclass Y {

Object foo;
}

…...
}

automatically generated

by TENTE code generator

cclass MyProduct extends B & C {
B myB = new B();

C myC = new C();
…...

}

automatically generated

by TENTE code generator

uses

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 4 / 30

Background: Software Product Line Engineering SPL engineering processes

Domain Engineering vs Application Engineering

Domain Engineering Application Engineering

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 5 / 30

Background: Software Product Line Engineering SPL engineering processes

Domain Engineering vs Application Engineering

Domain Engineering Application Engineering

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 5 / 30

Background: Software Product Line Engineering SPL engineering processes

Domain Engineering vs Application Engineering

Domain Engineering Application Engineering

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 5 / 30

Background: Software Product Line Engineering SPL engineering processes

Domain Engineering vs Application Engineering

Domain Engineering Application Engineering

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 5 / 30

Background: Software Product Line Engineering SPL engineering processes

Domain Engineering vs Application Engineering

Domain Engineering Application Engineering

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 5 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]).

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

2 We need mechanism for designing and implementing flexible and
reusable software assets.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

2 We need mechanism for designing and implementing flexible and
reusable software assets. Main goal: modularize features.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

2 We need mechanism for designing and implementing flexible and
reusable software assets. Main goal: modularize features. Solution
Space.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

2 We need mechanism for designing and implementing flexible and
reusable software assets. Main goal: modularize features. Solution
Space.

3 We need languages for specifying how problem and solution space
models are related.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

2 We need mechanism for designing and implementing flexible and
reusable software assets. Main goal: modularize features. Solution
Space.

3 We need languages for specifying how problem and solution space
models are related. Mapping between problem and solution space
models.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

2 We need mechanism for designing and implementing flexible and
reusable software assets. Main goal: modularize features. Solution
Space.

3 We need languages for specifying how problem and solution space
models are related. Mapping between problem and solution space
models.

4 Construction of specific products from domain engineering software
assets should be as automatic as possible.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 6 / 30

Background: Software Product Line Engineering Running Example: Lock Control Framework

Running Example: Lock Control Framework

As part of a Smart Home SPL, a door lock control framework must be
designed. This lock control is placed on doors of rooms whose access must
be controlled. Several options are available to end users acquiring a
specific Smart Home software installation:

Different authentication mechanisms can be used: identification cards,
fingerprint scanners or a simple numeric keypad.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 7 / 30

Background: Software Product Line Engineering Running Example: Lock Control Framework

Running Example: Lock Control Framework

As part of a Smart Home SPL, a door lock control framework must be
designed. This lock control is placed on doors of rooms whose access must
be controlled. Several options are available to end users acquiring a
specific Smart Home software installation:

Different authentication mechanisms can be used: identification cards,
fingerprint scanners or a simple numeric keypad.

Doors are opened manually and users have a time period to
authenticate before triggering the alarms. Optionally, it is possible to
select a computer-controlled door lock control, which will be released
upon successful authentication.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 7 / 30

Background: Software Product Line Engineering Running Example: Lock Control Framework

Running Example: Lock Control Framework

As part of a Smart Home SPL, a door lock control framework must be
designed. This lock control is placed on doors of rooms whose access must
be controlled. Several options are available to end users acquiring a
specific Smart Home software installation:

Different authentication mechanisms can be used: identification cards,
fingerprint scanners or a simple numeric keypad.

Doors are opened manually and users have a time period to
authenticate before triggering the alarms. Optionally, it is possible to
select a computer-controlled door lock control, which will be released
upon successful authentication.

Optionally, sliding doors that open automatically can also be used.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 7 / 30

Background: Software Product Line Engineering Running Example: Lock Control Framework

Variability Specification

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 8 / 30

Background: Software Product Line Engineering Running Example: Lock Control Framework

Variability Realisation/Design

LockControlclass []

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 9 / 30

Background: Software Product Line Engineering Running Example: Lock Control Framework

Linking between specification and realisation

LockControlclass []

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 10 / 30

Hydra

Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 11 / 30

Hydra

Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

2 VML (Variability Management Language).

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 11 / 30

Hydra

Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

2 VML (Variability Management Language).

3 TENTE, a model-driven feature-oriented process for SPL engineering.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 11 / 30

Hydra

Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

2 VML (Variability Management Language).

3 TENTE, a model-driven feature-oriented process for SPL engineering.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 11 / 30

Hydra Motivation

Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 12 / 30

Hydra Motivation

Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

SmartEnergyMng requires WindowMng and HeaterMng.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 12 / 30

Hydra Motivation

Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

SmartEnergyMng requires WindowMng and HeaterMng.

SmartEnergyMng → (WindowMng ∧ HeaterMng)

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 12 / 30

Hydra Motivation

Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

SmartEnergyMng requires WindowMng and HeaterMng.

SmartEnergyMng → (WindowMng ∧ HeaterMng)

Using BDD, SAT or CSP, we can analize several properties of a
feature model [3, 1]:

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 12 / 30

Hydra Motivation

Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

SmartEnergyMng requires WindowMng and HeaterMng.

SmartEnergyMng → (WindowMng ∧ HeaterMng)

Using BDD, SAT or CSP, we can analize several properties of a
feature model [3, 1]:

1 Autocomplete.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 12 / 30

Hydra Motivation

Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

SmartEnergyMng requires WindowMng and HeaterMng.

SmartEnergyMng → (WindowMng ∧ HeaterMng)

Using BDD, SAT or CSP, we can analize several properties of a
feature model [3, 1]:

1 Autocomplete.
2 Dead features.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 12 / 30

Hydra Motivation

Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

SmartEnergyMng requires WindowMng and HeaterMng.

SmartEnergyMng → (WindowMng ∧ HeaterMng)

Using BDD, SAT or CSP, we can analize several properties of a
feature model [3, 1]:

1 Autocomplete.
2 Dead features.
3 Number of remaining configurations.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 12 / 30

Hydra Motivation

Shortcomings of traditional feature models

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 13 / 30

Hydra Motivation

Shortcomings of traditional feature models

I want to construct software for automated houses with one or more
floors, and one or more rooms per floor [4].

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 13 / 30

Hydra Motivation

Shortcomings of traditional feature models

I want to construct software for automated houses with one or more
floors, and one or more rooms per floor [4].

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 13 / 30

Hydra Motivation

Challenges of constraints involving clonable features

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 14 / 30

Hydra Motivation

Challenges of constraints involving clonable features

LighMng → Light. What does it mean? How many Lights? [5]

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 14 / 30

Hydra Motivation

Challenges of constraints involving clonable features

LighMng → Light. What does it mean? How many Lights? [5]

If LightMng is selected globally, it must also be selected per floor and
room.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 14 / 30

Hydra Motivation

Challenges of constraints involving clonable features

LighMng → Light. What does it mean? How many Lights? [5]

If LightMng is selected globally, it must also be selected per floor and
room.

If LightMng is selected in a Room, a Light, at least, must also be
selected in that a room.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 14 / 30

Hydra Tool support

Hydra

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 15 / 30

Hydra Tool support

Hydra

Visual edition of cardinality-based feature models.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 16 / 30

Hydra Tool support

Hydra

Visual edition of cardinality-based feature models.

Assisted and visual edition of (multiple) configurations of
cardinality-based feature models.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 16 / 30

Hydra Tool support

Hydra

Visual edition of cardinality-based feature models.

Assisted and visual edition of (multiple) configurations of
cardinality-based feature models.

A textual editor for constraints including clonable features (without
contexts).

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 16 / 30

Hydra Tool support

Hydra

Visual edition of cardinality-based feature models.

Assisted and visual edition of (multiple) configurations of
cardinality-based feature models.

A textual editor for constraints including clonable features (without
contexts).

A reasoner for these constraints.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 16 / 30

Hydra Tool support

Hydra

Visual edition of cardinality-based feature models.

Assisted and visual edition of (multiple) configurations of
cardinality-based feature models.

A textual editor for constraints including clonable features (without
contexts).

A reasoner for these constraints.

Constructed following model-driven engineering principles with Ecore,
TEF and GMF.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 16 / 30

VML

Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

2 VML (Variability Management Language).

3 TENTE, a model-driven feature-oriented process for SPL engineering.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 17 / 30

VML

Variability Management Language

LockControlclass []

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

Variability Management Language

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

import features <"/lockControl.fmp">;

import core <"/lockControl.uml">;

Concern LockControl{

variant for Keypad {

connect(KeypadReader,LockControlMng) using interface(IAccess);

connect(KeypadReader,LockControlMng) using interface(IRegister);

connect(LockControlMng,KeypadAuth) using interface(IVerify);

connect(KeypadAuth,LockControlMng) using interface(IRegister);

}

variant for not(Keypad) {

remove(KeypadReader);

remove(KeypadAuth);

} // CrisisManagementSystem

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

Variability Management Language

LockControlclass []

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

Variability Management Language

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

import features <"/lockControl.fmp">;

import core <"/lockControl.uml">;

Concern LockControl{

variant for Keypad {

connect(KeypadReader,LockControlMng) using interface(IAccess);

connect(KeypadReader,LockControlMng) using interface(IRegister);

connect(LockControlMng,KeypadAuth) using interface(IVerify);

connect(KeypadAuth,LockControlMng) using interface(IRegister);

}

variant for not(Keypad) {

remove(KeypadReader);

remove(KeypadAuth);

} // CrisisManagementSystem

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

Variability Management Language

LockControlclass []

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

Variability Management Language

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

import features <"/lockControl.fmp">;

import core <"/lockControl.uml">;

Concern LockControl{

variant for Keypad {

connect(KeypadReader,LockControlMng) using interface(IAccess);

connect(KeypadReader,LockControlMng) using interface(IRegister);

connect(LockControlMng,KeypadAuth) using interface(IVerify);

connect(KeypadAuth,LockControlMng) using interface(IRegister);

}

variant for not(Keypad) {

remove(KeypadReader);

remove(KeypadAuth);

} // CrisisManagementSystem

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

Variability Management Language

LockControlclass []

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

Variability Management Language

LockControlclass []

<<component>>
LockControlMng

<<component>>
KeypadAuth

<<component>>
Keypad
Reader

IRegister

IAccess IVerify

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30

VML

VML compilation process

VML Specification
(text in VML syntax)

VML Metamodel
(Ecore metamodel)

VML Model
(Ecore model)

instanceOf

VML Syntax
(EBNF) generated

by xText

conformsTo

VML Editor

parsed by VML
editor

Library of VML operators
as M2M transformations

(xTend)

xPand templates

generated using
xPand

1

2

Derivation process as a
M2M transformation

(xTend)

use

3

VML Configuration
(text in VML syntax)

configures

parsed by VML
editor

VML Configuration Model
(Ecore model)

xPand templates

Script file
(workflow file)

xTend trans
4

invokes

5

3

6

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 19 / 30

VML

Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

2 VML (Variability Management Language).

3 TENTE, a model-driven feature-oriented process for SPL engineering.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 20 / 30

VML

The TENTE SPL engineering process

Domain Engineering Application Engineering

[1..*]

[1..*]

Requirements Engineering

Architectural Design

Implementation

VML4RE

[1..*]

[1..*]

refinement
used as input for

manual construction

<< component>>

<< component>>

<< component >>
VMLArch

1

refinement

manually constructed

by refinement

2

manually

completed

3

A B

C

<< component>>

<< component >>

B

C

4

automatically generated

by VML4Arch execution

5

cclass A {
cclass X {

// TODO

}

…...
}

cclass B {
cclass Y {

// TODO

}

…...
}

cclass A {
cclass X {

int counter;
}

…...
}

cclass B {
cclass Y {

Object foo;
}

…...
}

automatically generated

by TENTE code generator

cclass MyProduct extends B & C {
B myB = new B();

C myC = new C();
…...

}

automatically generated

by TENTE code generator

uses

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 21 / 30

VML

The TENTE SPL engineering process

Architectural Design

Implementation

[1..*]

[1..*]

<< component>>

<< component>>

<< component >>
VMLArch

1 manually constructed

by refinement

2

manually

completed

3

A B

C

<< component>>

<< component >>

B

C

4

automatically generated

by VML4Arch execution

5

cclass A {
cclass X {

// TODO

}

…...
}

cclass B {
cclass Y {

// TODO

}

…...
}

cclass A {
cclass X {

int counter;
}

…...
}

cclass B {
cclass Y {

Object foo;
}

…...
}

automatically generated

by TENTE code generator

cclass MyProduct extends B & C {
B myB = new B();

C myC = new C();
…...

}

automatically generated

by TENTE code generator

uses

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 22 / 30

Benefits

Is SPL cost-effective?

Enginneering effort
(time)

Req-Arch Mappings executed

Initial Extra Cost

Benefits

n

Key
 No MDD
 MDD

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 23 / 30

More information

Websites

1 AMPLE project & VML: http://www.ample-project.net

2 TENTE: http://caosd.lcc.uma.es/spl/TENTE

3 Hydra: http://caosd.lcc.uma.es/spl/hydra

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 24 / 30

http://www.ample-project.net
http://caosd.lcc.uma.es/spl/TENTE
http://caosd.lcc.uma.es/spl/hydra

Bibliography

References I

Don S. Batory.
Feature Models, Grammars, and Propositional Formulas.
In J. Henk Obbink and Klaus Pohl, editors, Proc. of the 9th Int.
Conference on Software Product Lines (SPLC), volume 3714 of LNCS,
pages 7–20, Rennes (France), September 2005.

Don S. Batory, Maider Azanza, and João Saraiva.
The Objects and Arrows of Computational Design.
In Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and
Markus Völter, editors, Proc. of the 11th Int. Conference Model
Driven Engineering Languages and Systems (MoDELS), volume 5301
of LNCS, pages 1–20, Toulouse (France), September - October 2008.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 25 / 30

Bibliography

References II

David Benavides, Pablo Trinidad Mart́ın-Arroyo, and Antonio Ruiz
Cortés.
Automated Reasoning on Feature Models.
In Oscar Pastor and João Falcão e Cunha, editors, Proc. of the 17th
Int. Conference on Advanced Information Systems Engineering
(CAiSE), pages 491–503, Porto (Portugal), June 2005.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker.
Staged Configuration through Specialization and Multilevel
Configuration of Feature Models.
Software Process: Improvement and Practice, 10(2):143–169,
January-March 2005.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 26 / 30

Bibliography

References III

Krzysztof Czarnecki and Chang Hwan Peter Kim.
Cardinality-Based Feature Modeling and Constraints: A Progress
Report.
In Proc. of the 1st. Int. Workshop on Software Factories (SF), 24th
Annual Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). San Diego (California,
USA), October 2005.

Lidia Fuentes, Carlos Nebrera, and Pablo Sánchez.
Feature-oriented model-driven software product lines: The TENTE
approach.
In Eric Yu, Johann Eder, and Colette Rolland, editors, Proceedings of
the Forum at the CAiSE 2009 Conference, pages 67–72, 2009.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 27 / 30

Bibliography

References IV

Hassan Gomaa.
Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures.
Addison-Wesley, July 2004.

Timo Käkölä and Juan Carlos Dueñas.
Software Product Lines: Research Issues in Engineering and
Management.
Springer, October 2006.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, November 1990.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 28 / 30

Bibliography

References V

Neil Loughran, Pablo Sánchez, Alessandro Garcia, and Lidia Fuentes.
Language Support for Managing Variability in Architectural Models.
In Cesare Pautasso and Éric Tanter, editors, Proc. of the 7th Int.
Symposium on Software Composition (SC), volume 4954 of LNCS,
pages 36–51, Budapest (Hungary), March 2008.

Klaus Pohl, Gunther Bockle, and Frank van der Linden.
August.

Pablo Sánchez, Neil Loughran, Lidia Fuentes, and Alessandro Garcia.
Engineering languages for specifying product-derivation processes in
software product lines.
In Dragan Gasevic, Ralf Lämmel, and Eric Van Wyk, editors,
Proceedings of the 1st International Conference on Software Language
Engineering (SLE), volume 5452 of LNCS, pages 188–207, Toulouse
(France), September 2008.

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 29 / 30

Questions

Questions ?

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 30 / 30

