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Background: Software Product Line Engineering SPL Goal

Software Product Line Engineering

Software Product Line Holly Grail

Create an infrastructure for dealing with the variability of similar software
systems [7, 11, 8].

Example: Applications for mobile devices
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Background: Software Product Line Engineering SPL engineering processes

A typical SPL engineering process

Domain Engineering Application Engineering

[1..*]

[1..*]

Requirements Engineering

Architectural Design

Implementation

VML4RE

[1..*]

[1..*]

refinement
used as input for

manual construction

<< component>>

<< component>>

<< component >>
VMLArch

1

refinement

manually constructed

by refinement

2

manually

completed

3

A B

C

<< component>>

<< component >>

B

C

4

automatically generated

by VML4Arch execution

5

cclass A {
cclass X {

// TODO

}

…...
}

cclass B {
cclass Y {

// TODO

}

…...
}

cclass A {
cclass X {

int counter;
}

…...
}

cclass B {
cclass Y {

Object foo;
}

…...
}

automatically generated

by TENTE code generator

cclass MyProduct extends B & C {
B myB = new B();

C myC = new C();
…...

}

automatically generated

by TENTE code generator

uses
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Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]).
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Background: Software Product Line Engineering SPL Challenges

Software Product Lines Challenges

1 We need languages for analysing and specifying variability in a set of
similar software products (e.g. feature models [4, 9]). Problem Space.

2 We need mechanism for designing and implementing flexible and
reusable software assets. Main goal: modularize features. Solution
Space.

3 We need languages for specifying how problem and solution space
models are related. Mapping between problem and solution space
models.

4 Construction of specific products from domain engineering software
assets should be as automatic as possible.
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Background: Software Product Line Engineering Running Example: Lock Control Framework

Running Example: Lock Control Framework

As part of a Smart Home SPL, a door lock control framework must be
designed. This lock control is placed on doors of rooms whose access must
be controlled. Several options are available to end users acquiring a
specific Smart Home software installation:

Different authentication mechanisms can be used: identification cards,
fingerprint scanners or a simple numeric keypad.
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Running Example: Lock Control Framework

As part of a Smart Home SPL, a door lock control framework must be
designed. This lock control is placed on doors of rooms whose access must
be controlled. Several options are available to end users acquiring a
specific Smart Home software installation:

Different authentication mechanisms can be used: identification cards,
fingerprint scanners or a simple numeric keypad.

Doors are opened manually and users have a time period to
authenticate before triggering the alarms. Optionally, it is possible to
select a computer-controlled door lock control, which will be released
upon successful authentication.

Optionally, sliding doors that open automatically can also be used.
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Background: Software Product Line Engineering Running Example: Lock Control Framework

Variability Specification

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener
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Variability Realisation/Design

LockControlclass [   ]

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener
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Constraints on feature models

SmartHome

SmartEnergyMngHeaterMng WindowMng

SmartEnergyMng requires WindowMng and HeaterMng.

SmartEnergyMng → (WindowMng ∧ HeaterMng)

Using BDD, SAT or CSP, we can analize several properties of a
feature model [3, 1]:

1 Autocomplete.
2 Dead features.
3 Number of remaining configurations.
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Hydra Motivation

Challenges of constraints involving clonable features

LighMng → Light. What does it mean? How many Lights? [5]

If LightMng is selected globally, it must also be selected per floor and
room.

If LightMng is selected in a Room, a Light, at least, must also be
selected in that a room.
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Hydra Tool support

Hydra

Visual edition of cardinality-based feature models.

Assisted and visual edition of (multiple) configurations of
cardinality-based feature models.

A textual editor for constraints including clonable features (without
contexts).

A reasoner for these constraints.

Constructed following model-driven engineering principles with Ecore,
TEF and GMF.
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Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

2 VML (Variability Management Language).

3 TENTE, a model-driven feature-oriented process for SPL engineering.
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VML

Variability Management Language

LockControlclass [   ]

<<component>>
LockControlMng

<<component>>
FingerprintAuth

<<component>>
CardAuth

<<component>>
KeypadAuth

<<component>>
Door

Actuator

<<component>>
Lock

Control

<<component>>
Card

Reader

<<component>>
Keypad
Reader

<<component>>
Fingerprint

Reader

ILockControl
IRegister

IAccess

IVerify

IDoor

LockControl

AuthenticationDevice

FingerprintScanner

AutomaticLock

CardReaderKeypad

DoorOpener
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VML

Variability Management Language

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

import features <"/lockControl.fmp">;

import core <"/lockControl.uml">;

Concern LockControl{

variant for Keypad {

connect(KeypadReader,LockControlMng) using interface(IAccess);

connect(KeypadReader,LockControlMng) using interface(IRegister);

connect(LockControlMng,KeypadAuth) using interface(IVerify);

connect(KeypadAuth,LockControlMng) using interface(IRegister);

}

variant for not(Keypad) {

remove(KeypadReader);

remove(KeypadAuth);

} // CrisisManagementSystem
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VML

Variability Management Language

LockControlclass [   ]

<<component>>
LockControlMng

<<component>>
KeypadAuth

<<component>>
Keypad
Reader

IRegister

IAccess IVerify

Pablo Sánchez (MATESCO) Software Product Line Engineering LSI -WorSe 18 / 30



VML

VML compilation process

VML Specification
(text in VML syntax)

VML Metamodel
(Ecore metamodel)

VML Model
(Ecore model)

instanceOf

VML Syntax
(EBNF) generated 

by xText

conformsTo

VML Editor

parsed by VML
editor

Library of VML operators
as M2M transformations

(xTend)

xPand templates

generated using 
xPand

1

2

Derivation process as a
M2M transformation

(xTend)

use

3

VML Configuration
(text in VML syntax)

configures

parsed by VML
editor

VML Configuration Model
(Ecore model)

xPand templates

Script file
(workflow file)

xTend trans 
4

invokes

5

3

6
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VML

Contributions to SPLE where I have participated

1 Hydra, a tool for creating cardinality-based feature models.

2 VML (Variability Management Language).

3 TENTE, a model-driven feature-oriented process for SPL engineering.
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VML

The TENTE SPL engineering process

Domain Engineering Application Engineering

[1..*]

[1..*]

Requirements Engineering

Architectural Design

Implementation

VML4RE

[1..*]

[1..*]

refinement
used as input for

manual construction

<< component>>

<< component>>

<< component >>
VMLArch

1

refinement

manually constructed

by refinement

2

manually

completed

3

A B

C

<< component>>

<< component >>

B

C

4

automatically generated

by VML4Arch execution

5

cclass A {
cclass X {

// TODO

}

…...
}

cclass B {
cclass Y {

// TODO

}

…...
}

cclass A {
cclass X {

int counter;
}

…...
}

cclass B {
cclass Y {

Object foo;
}

…...
}

automatically generated

by TENTE code generator

cclass MyProduct extends B & C {
B myB = new B();

C myC = new C();
…...

}

automatically generated

by TENTE code generator

uses
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}

…...
}

automatically generated

by TENTE code generator

cclass MyProduct extends B & C {
B myB = new B();

C myC = new C();
…...

}

automatically generated

by TENTE code generator

uses
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Benefits

Is SPL cost-effective?

Enginneering effort  
(time)

Req-Arch Mappings executed

Initial Extra Cost

Benefits

n 

Key
 No MDD
 MDD
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More information

Websites

1 AMPLE project & VML: http://www.ample-project.net

2 TENTE: http://caosd.lcc.uma.es/spl/TENTE

3 Hydra: http://caosd.lcc.uma.es/spl/hydra
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Questions

Questions ?
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